Calcium channel density and hippocampal cell death with age in long-term culture.

نویسندگان

  • N M Porter
  • O Thibault
  • V Thibault
  • K C Chen
  • P W Landfield
چکیده

The expression of voltage-gated calcium (Ca2+) channel activity in brain cells is known to be important for several aspects of neuronal development. In addition, excessive Ca2+ influx has been linked clearly to neurotoxicity both in vivo and in vitro; however, the temporal relationship between the development of Ca2+ channel activity and neuronal survival is not understood. Over a period spanning 28 d in vitro, progressive increases in high voltage-activated whole-cell Ca2+ current and L-type Ca2+ channel activity were observed in cultured hippocampal neurons. On the basis of single-channel analyses, these increases seem to arise in part from a greater density of functionally available L-type Ca2+ channels. An increase in mRNA for the alpha1 subunit of L-type Ca2+ channels occurred over a similar time course, which suggests that a change in gene expression may underlie the increased channel density. Parallel studies showed that hippocampal neuronal survival over 28 d was inversely related to increasing Ca2+ current density. Chronic treatment of hippocampal neurons with the L-type Ca2+ channel antagonist nimodipine significantly enhanced survival. Together, these results suggest that age-dependent increases in the density of Ca2+ channels might contribute significantly to declining viability of hippocampal neurons. The results also are analogous to patterns seen in neurons of aged animals and therefore raise the possibility that long-term primary neuronal culture could serve as a model for some aspects of aging changes in hippocampal Ca2+ channel function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures.

The membrane density of L-type voltage-sensitive Ca(2+) channels (L-VSCCs) of rat hippocampal neurons increases over age [days in vitro (DIV)] in long-term primary cultures, apparently contributing both to spontaneous cell death and to enhanced excitotoxic vulnerability. Similar increases in L-VSCCs occur during brain aging in vivo in rat and rabbit hippocampal neurons. However, unraveling both...

متن کامل

Role of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats

  The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...

متن کامل

اثرات تاموکسیفن بر فراساختار و تعداد سلولهای هیپوکامپ جنین و نوزاد The Effects of Tamoxifen on Ultrastructure and the Number of Hippocampal Cells in Rat’s Fetus and Neonate

    Background & Aim: Maternal steroids modulate various functions in the brain. However, tamoxifen(TAM) treatment, as an estrogen antagonist, induces cell death in the hippocampus formation of a prenatal and postnatal rat. Estrogen influences cognitive functions, learning process, aging, vasodilation, angiogenesis, neurogenesis and neuroprotection. The present study deals with the effects of t...

متن کامل

Protein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process

Objective(s): Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippoca...

متن کامل

Culturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media

Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 17 14  شماره 

صفحات  -

تاریخ انتشار 1997